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INFLUENCE OF MOLAR MASS DISTRIBUTION 
ON THE COMPATIBILITY OF POLYMERS 

SABINE ENDERS, AXEL HINRICHS, ROLAND HORST, 
and B. A. WOLF* 

Institute of Physical Chemistry 
Johannes Gutenberg-University 
Jakob-Welder-Weg 13, D-55099 Mainz, Germany 

ABSTRACT 

Phase equilibria were calculated by means of a new method (direct 
minimization of the Gibbs energy of mixing) for polymer blends consist- 
ing of monodisperse polymer A and polydisperse polymer B. The results 
obtained for a Schulz-Flory distribution of B (molecular nonuniformity 
U = (M,/M,) - 1 = 1 and 100 components of model B) agree quanti- 
tatively with that of computations on the basis of continuous thermody- 
namics. The influence of V, on the miscibility of A and B in 1 :1 mixtures 
was studied for constant M, of B, quantifying the incompatibility of the 
polymers by the length of the tie lines. The outcome of these calculations 
demonstrates that the typical effect of an augmentation of U, (keeping 
M, and the overall composition constant) consists in an enlargement of 
the mutual solubility of A and B. However, for an almost compatible 
pair of polymers (i.e., interaction parameters g are only slightly larger 
than the critical values for U, = 0), this statement remains true only in 
the case of sufficiently small U,. In order to gain some understanding of 
these findings, calculations were also performed for ternary systems (A 
and two species B). They demonstrate that it is the distance of the overall 
composition in the Gibbs phase triangle to the critical line (connecting 
the critical points for different U,) which governs the changes in compat- 
ibility. Normally the critical point comes closer to the overall composi- 
tion as U, is raised, except for low g values where the critical point - 
after an initial approach - drifts apart as U, becomes larger. 
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INTRODUCTION 

ENDERS ET AL. 

Phase separated polymer blends [ 11 often possess interesting technical proper- 
ties which, among other things, depend on the mutual solubility of the components. 
It would therefore be of great interest to calculate phase equilibria for such mixtures 
of synthetic polymers as realistically as possible. One serious problem in these 
computations results from the fact that they become considerably more difficult if 
one wants to include effects resulting from the distributions of molar mass. For this 
reason, most of the theoretical work in the field of thermodynamics of polymer 
blends [2, 31 excludes this aspect. 

Currently, the consequences of polydispersity can be studied in two different 
manners: 1) by means of continuous thermodynamics [4, 51 which permits a com- 
plete treatment of a mixture of two polydisperse polymers, and 2) by a new ap- 
proach [6], which can handle very large numbers of components in a comparatively 
easy manner. 

With method 1) the calculation of phase diagrams follows the common proce- 
dure using the equality of chemical potentials in the coexisting phases, The equa- 
tions for the chemical potentials p obtained from those formulated for the Gibbs 
energy of mixing, AG, by differentiation with respect to the composition variables 
are solved either analytically or numerically. The calculation of spinodal lines, 
separating the unstable from the metastable area, and of critical points requires the 
second and the third derivatives of AG. 

Approach 2), on the other hand, does not need derivatives of the Gibbs energy 
and works exclusively with the requirement that the Gibbs energy of a given system 
becomes minimum in the equilibrium state. Up to now this new method has been 
applied to mixtures of two homopolymers with the corresponding copolymer [ 6 ] ,  to 
quaternary polymer blends [7], and, very recently, in continuation of an investiga- 
tion on the influences of shear on the phase diagram of polymer mixtures [8], to a 
flowing ternary blend [9]. 

It is the aim of the present contribution to apply the new method [6] to a 
mixture containing one molecularly uniform component (solvent or monodisperse 
polymer A) and a polydisperse polymer B, and to compare the results of these 
calculations with those of continuous thermodynamics [4]. Furthermore, the influ- 
ences of polydispersity on the mutual solubility of the components are studied by 
means of ternary and quaternary model systems made up of monodisperse A and 
two or three monodisperse species B which differ in their molar mass. 

THEORETICAL BACKGROUND AND CALCULATION PROCEDURE 

In studying polymer systems, it is convenient to imagine that all molecules are 
divided into segments of equal size. A molar volume of the segment, V,, is defined; 
the number of segments per molecule N, of component i can then be calculated by 
dividing the molar volume by V,. 

The Gibbs energy of mixing of L components is evaluated by means of the 
Flory-Huggins equation [ 21. 
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INFLUENCE OF MOLAR MASS DISTRIBUTION 1099 

L - l  L 
L 1  

- 
A 3  
RT , = I  N, , = I  / = , + I  
- = C - vl  In cpI + C C gl,iplcp, 

where p, and p, are the volume fractions for components i and j ,  and gl, are the 
interaction parameters. 

The tie lines are given by the condition that the chemical potential of each 
component is identical in all coexisting phases. Furthermore, the spinodal and criti- 
cal line can be calculated by the common stability theory. In a ternary system the 
spinodal (Do = 0) and critical condition (Dl = 0) are 

a 2 z / R T \  

L -1 

CONTINUOUS THERMODYNAMICS OF POLYMER MIXTURES 

Continuous thermodynamics is a version of thermodynamics describing the 
composition of a mixture by a continuous distribution function instead of the mole 
fractions, volume fractions, etc. of individual components [4]. The polymer can, 
for instance, be characterized by the Schulz-Flory distribution function, reading for 
polymer B: 

where NB is the number of segments for the considered polymer species and NBN is 
the corresponding number average. r means the gamma function, and it is required 
since the integral over WB(NB) must be unity. The parameter k is related to mass 
(weight) and the number average of NB, and the nonuniformity UB by 

( 5 )  
1 - _  - 1 k =  

WB(NB)dNB is the amount of segments of all species of the polymer B with 
segment numbers between NB and NB + dNB. Hence, integration over the total NB 
range of the molecules (this integration will be signified simply by the symbol J )  
results in 

NBW/NBN - 1 UB 

wB(NB)dNB = 1 ( 6 )  

In the continuous treatment, instead of a discrete identification index i ,  the 
continuous identification variable NB is used. The equation for the segment-molar 
Gibbs free energy reads: 
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1100 ENDERS ET AL. 

- 
A T  1 

- - (PA (PA + - [(PBWB(NB)l ln[(PBwB(NB)ldNB + g(PA(PB (7) J hB - -  
R T  N A  

qA is the volume fraction of polymer A, and pB is the total volume fraction of all 
species B. The condition for equilibrium between two phases I and I1 may be 
expressed by the equality of the segment-molar chemical potentials: for the mono- 
disperse polymer A 

(8) 

Pk(NB) = Pi(NB) (9) 

I I1  
P A  = P A  

and for the polydisperse polymer B 

Here the phase equilibrium condition for polymer B holds for all continuous 
polymer species within the total segment number range of the system. Application 
of the lattice theory by Flory-Huggins [2] yields for A: 

and for B: 

+ R T 1 n f B ( N B )  

where pT are the standard segment-molar chemical potentials, NM is the number- 
average segment number of the considered mixture, and fA and fB(&) are the 
segment molar activity coefficients. Replacing pA and pB(NB) in Eqs. (8) and (9) 
according to  Eqs. (10) and (1 1) and rearranging the equations results in 

(12) 

(P:W~(NB) = (~kwi(NB) ~xP(NBPB(NB)) ( 1 3 )  

I I  
(PA = ( P i  exp(NflA) 

The abbreviations pA and pB(N) have the following meanings: 

1 1 

NL NL 
pA = - - - - Inf; + InfX 

For the calculation of coexistence curves, the mass balance relationships must 
be additionally taken into account. The overall system, indicated by the index "oa," 
splits into the two coexisting phases I and 11. Introducing 4 the quotient of the 
amount of segments in phase I1 ( n " )  divided by that of all segments (no"): 

# = .'I/n"a (16) 

results in corresponding relations for the intensive quantities: 

(Pr = ( 1  - + ) ( P i  + #(P! 

( P o , " W ? ( N B )  = ( l  - @ ) ( P L W k ( N B )  + @(PiWi(NB) 
In addition to  the overall composition, T and p are assumed to be specified. 

The other variables are the unknowns. To solve the problem, the conditions of 
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INFLUENCE OF MOLAR MASS DISTRIBUTION 1101 

phase equilibrium, Eqs. ( 1 2 )  and ( 1 3 ) ,  and the mass balance relationships, Eqs. (17) 
and ( 1 8 ) ,  are combined. 

For easier treatment the equations are rearranged by replacing quantities refer- 
ring to phase I so that expressions for phase I1 are obtained. These are one func- 
tional equation to calculate W:(NB) and two scalar equations to calculate p: and 6 
(or 7‘). Using 

1 1 1 - = ( 1 - 4 ) - + + -  N; NL N i  

the difference l / N ;  - l /NL occurring within the expressions for p A ,  Eq. (14), and 
pB(NB), Eq. ( 1 9 ,  can be replaced. 

If lnfB is independent of NB, NL is the only functional and considered as an 
additional unknown scalar. The corresponding equation reads 

In this way, W;(NB) and WL(NB) are given directly and explicitly. The three 
occurring scalars, p i ,  I$ (or T), and NL, must be calculated by numerical solution 
of Eqs. (19), (20), and ( 2 2 ) .  To find this solution, the number of unknowns may be 
reduced by one since the simple structure of Eq. (19) permits the elimination of N s .  

The Flory-Huggins interaction parameter [ 2 ]  g will be taken to be constant, 
i.e., independent of molar mass and composition. This means: 

lnfA = gp’, ( 2 3 )  

l n f B  = gp: (24) 

The equation for the spinodal curve and for the critical point are derived from 
the stability conditions [ l o ]  to be 

+ 2 g = o  1 -+ -  1 

(PAN, P&BW 

where the critical point also has to fulfill Eq. ( 2 5 ) .  NBz means the z-average of NB. 

DIRECT MINIMIZATION OF THE GlBBS ENERGY OF MIXING 

In preceding papers [6, 71 a method for calculating phase diagrams of ternary 
or quaternary systems was presented. This method requires only the Gibbs energy 
of mixing but not its derivatives with respect to the composition variables; it is 
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1102 ENDERS ET AL. 

therefore particularly advantageous for studies of complex composition dependen- 
cies of interaction parameters. Furthermore, the method turns out to be very useful 
to deal with situations where the Gibbs energy must be modified by terms which 
cannot be treated analytically as usual. An example of such a case is phase diagrams 
of flowing polymer blends [8, 91. Another convenience of the present procedure 
lies in the fact that the coexistence condition is formulated in one equation only, 
independent of the number of components. 

Binary Systems AIB 

The new procedure to calculate spinodal and binodal lines is demonstrated in 
Fig. 1 for a binary system of two monodisperse components. At compositions which 
are sufficiently close to the pure components, there exist ranges of stability. Around 
the center of the concentration axis there is the unstable range where the binary 
mixtures phase separates spontaneously. The unstable and the stable domains are 
separated by a range of metastability where the homogeneous system has to over- 
come an energy barrier in order to demix. 

For the calculation of the spinodal line the volume fraction axis pB is divided 
into n equal parts (in the present example, n = 5 ) ;  the number n determines the 
accuracy of the computation. In Fig. 1 the four points at which this subdivision is 
made are indicated by the vertical dotted lines (the fifth point is located at pB = 1 

VB 
0.0 0.2 dB v r  9:: 0.6 0.8 1 .o 

I I I 
I 

I 

secant of 
test tie line 

double tangent of 
equilibrium tie line 

0 AG homogeneous 

0 ~ G ~ d e m i x e d  
I -- 

stable meta- unstable 
stable 

meta- stable 
stable 

FIG. 1. Scheme demonstrating how test tie lines for a binary system, made up of 
components A and B, are used to calculate phase diagrams utilizing only the (segment molar) 
Gibbs energy of mixing; qB is the fraction of B segments. 
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INFLUENCE OF MOLAR MASS DISTRIBUTION 1103 

where the system is homogeneous). At these points it is checked whether the mixture 
is stable or unstable. To that end one assumes that the system splits into two phases 
occupying the same volume, i.e., 4 of Eq. ( 1 6 )  becomes 0.5. Mathematically this 
situation is represented by a secant to AG symmetrical around the overall composi- 
tion cpr. Since the difference in composition (p i  - cph) is chosen to be equal to 
l / n ,  this quantity becomes very small for sufficiently large n and the calculation 
simulates the beginning of the demixing processes. Naturally the line connecting 
these two test phases, which we call the test tie line, practically never represents an 
equilibrium situation. 

In Fig. 1 the construction of test tie lines is demonstrated for cp; = 0.4 and 
cp: = 0.8. The overall value AGOa for the demixedsystem is obtained by connecting 
the AG of the two test phases, i.e., drawing a secant to AG and reading the value of 
AGOa for the phase separated state from this secant at cpB = cp:: 

( 2 7 )  

If AGOa is less than AG of the homogeneous system (as shown in Fig. 1 at cp? = 0.4), 
the overall composition lies within the unstable area since the beginning of the 
demixing process, simulated by the test tie lines, leads to a decrease in AG (no 
energy barrier for phase separation). If, on the other hand, AGO" is larger than AG 
of the homogeneous mixture (Fig. 1 at cp: = 0.8), the system is either stable or 
metastable since a demixing process would be associated with an energy barrier. 
Choosing n sufficiently large and checking all points leads to the extension of the 
unstable area, and thus to the spinodal line. 

In order to determine the binodal conditions, one keeps the length of the 
secant and its levers around the overall composition (i.e., the volume ratio of the 
phases) open and determines the maximum reduction of AGO". In other words, all 
three variables are changed until the minimum of G of the total system is found. 
The equilibrium tie line is thus the secant for which the Gibbs energy of the system 
assumes its minimum value at a given f iFd  composition of the mixture. This secant 
is identical with the double tangent to AG ( pB). 

_= _5 

AGO" = ( 1 - + ) A T  -I- +AG" 

Ternary Systems A/Bl/BP 

If a similar approach is applied to ternary systems, ( n  - 2)(n  - 1)/2 points 
[6] are located in the interior of the phase diagram. In this case the test tie line must 
be rotated around the given overall composition until the minimum is found. The 
volume fractions of the two phases differ from those of the overall system by 

AcpA = sin( 3 + a) 0.5 n 

0.5 Ape, = s in(a)  - 
n 

Ape2 = sin( 5 - a) - 0.5 
n 

where the angle a describes the direction of the test tie line; the value of a leading to 
the minimum Gibbs energy has to be found by an iteration process. On the basis of 
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1104 ENDERS ET AL. 

this information it is possible to  determine critical points by the fact that the test tie 
line and the spinodal line must become parallel [ 1 1 1 .  

For fixed values of overall composition, pressure, and temperature, the tie 
lines in a ternary system are fully described by three quantities. For the present 
iterations these three quantities were chosen to be two volume fractions in phase I 
(p: and p;,) and the amount of phase I1 (6). The volume fractions of the compo- 
nents of phase I1 can be calculated according to  the mass balance. 

To  simulate a polydisperse polymer B we assume that this component consists 
of two molecular species (B1 and B2) differing in chain length. One special situation 
was selected for the discussion of the polydispersity influences, namely mixtures in 
which the volume fractions of the B components in the total polymer blend under 
consideration are equal. In the Gibbs phase triangle this means that only those 
overall compositions are taken into account which are located on the straight line 
passing through the A corner and the midpoint of the B1 and B2 edge. The values 
given for nonuniformities or average segment numbers consequently refer to  such 
mixtures only. 

Selecting a weight (mass) average segment number NBw and a certain nonuni- 
formity UB for the modeling, the segment numbers NB, and NB2 must obey the 
following relation: 

i.e., N B I  and NB2 are located symmetrically around NBw, and the nomenclature is 
chosen such that NBI < NB2. 

Quaternary Systems A/B1 /B2/B3 

For a system of four components the phase diagram at constant temperature 
and pressure can be represented by a tetrahedron, and ( n  - l ) ( n  - 2) (n  - 3)/6 
points are located inside this body. In order to find out whether a mixture is stable, 
those test tie lines must again be found for which the Gibbs energy of mixing 
assumes its minimum value. Their direction is now given by two angles a and 0. As 
before, the midpoint of the tie line is fixed by the overall composition. The values 
of a and are determined by an iteration process. The volume fractions of the test 
phases can be calculated by adding (or subtracting, respectively) 

1 
cos a sin 0 - - sin a sin 0 - 

n & 
1 

cos a sin /3 - - sin a sin /3 - 43 (33) 

(34) 
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INFLUENCE OF MOLAR MASS DISTRIBUTION 1105 

to the values of the overall system. Carrying out this procedure for all points, one 
obtains the complete domain of instability. 

As before, equilibrium tie lines are calculated by selecting on overall composi- 
tion inside the unstable area and minimizing the Gibbs energy of mixing. Three 
volume fractions of one coexisting phase-the fourth is given by the condition that 
the sum of the volume fractions is 1 -and Cp are determined in an iteration process. 
The composition of the second phase is then calculated by the mass balance. 

In a quaternary model system ((P: = %p;) and given values of NBw plus UB, 
the segment numbers of the polymers B1 and B3 are calculated by 

The segment number of B2 is identical with N B W .  

Multinary Systems A/B1/ . . . /Bm 

The present method, which is exclusively based on AG, is now extended to a 
mixture of a monodisperse polymer A with a polydisperse polymer B consisting of 
m species chosen equidistant on a logarithmic scale of molar mass. The calculation 
of tie lines for these multicomponent systems will be demonstrated; the calculation 
of spinodal lines is not the subject of the present publication. 

The starting point is again the Flory-Huggins theory (Eq. 1). Since g B B  is 
assumed to be zero, only A-B interactions i.e., &B;, must be taken into consider- 
ation: 

If the interaction parameters are independent of molar mass, Eq. (37) can be rewrit- 
ten as 

with 
m 

(PB = c (PBf (39) 
i =  1 

Equation (39) corresponds to Eq. ( 6 )  in the continuous case. 
The segment fractions cpBf are related to the discrete distribution WBi by 

where the mass-average segment number N B W  of polymer B is given by 
rn 

and the number-average segment number NBN by 
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1106 ENDERS ET AL. 

qL, the fraction of polymer B contained in phase I, is calculated according to 

The corresponding expression for the fractions KLi of the individual species Bi reads 

The above quantities are interrelated by 
k 

I =  I 

Molar mass-distributions in the coexisting phases and in the overall system must 
fulfill the following equation: 

KLi oa w‘ B -  - - W B  
q;  

Equations (43)-(46) are also valid for phase 11, where (1  - 4) has to be 
replaced by 4. The Gibbs energy of mixing of the overall system can be calculated 
according to Eq. (27). 

Knowing the interaction parameter, the molar mass distribution of B in the 
overall system (WE)  and the volume f rac tmcp?) ,  - it is again possible to calculate 
the phase equilibrium by minimization of AGOa : 

(47) = min 

The two-phase system is completely described by t b a r a m e t e r  9 and the m parame- 
ters Kbi. In c a s s  is independent of molar mass, AhG can be calculated according to 
Eq. (38); else A? must be calculated according to Eq. (37). 

Additional terms in the Gibbs energy (for example, in the case of flowing 
systems [ 81) or composition-dependent interaction parameters must be taken into 
account in Eq. (37) only. Therefore, the calculation procedure does not become 
notably more difficult for such systems. 

___ 
Ac““(4, KLl, KL2, . . . , KBm) 1 

RESULTS 

Before dealing with the effects of polydispersity on the compatibility of poly- 
mers, we test whether identical molar mass distributions are calculated for the 
polymers contained in the coexisting phases by means of continuous thermodynam- 
ics and by means of the new method minimizing the Gibbs energy directly. To this 
end A is assumed to be monodisperse and the molar mass distribution of polymer B 
in the overall system to be of the Schulz-Flory type. The interaction parameter g, 
the nonuniformity UB, the segment numbers NA plus NBw, and the overall concentra- 
tion ‘p: are chosen as noted in Fig. 2. 
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I -  

; \\  N,=N,, = 1000 . ; '\ 

FIG. 2. Molar mass distribution WB(NB) for a polymer blend consisting of a mono- 
disperse polymer A and a polydisperse polymer B. The number of segments N, (the index W 
indicates the mass average), the interaction parameter g, the nonuniformity UB and the 
overall composition pg are denoted in the graph. The broken line gives WB(NB) of the overall 
system, the full lines WB(NB) demonstrate how the individual species of component B distrib- 
ute on the coexisting phases. There is no difference between the results of the new method 
and of continuous thermodynamics. 

In this figure the distributions of B in the overall blend and in both coexisting 
phases are shown; in the case of the new method, the number of components B was 
chosen to be m = 100. Direct minimization of the Gibbs energy and continuous 
thermodynamics lead to identical results. For this reason we do not distinguish 
between the outcome of both procedures in the following. As expected, phase 
separation is associated with considerable fractionation. The A-rich phase contains 
mainly the short chains of B, whereas the long chains of this component are primar- 
ily found in the B-rich phase. 

In order to assess the influences of molar mass distributions on the compatibil- 
ity of polymers A and B at constant weight averages of the polymers, A p A  (the 
difference of the volume fraction of polymer A in the coexisting phases, i.e., the 
length of the tie lines in a quasi-binary representation of the systems) was chosen as 
the most convincing quantity; ApA has already proven to be very suitable as a source 
of gross information on the mutual solubility of the components when studying 
interfacial tensions [ 12 J between coexisting phases of polymer solutions. 

In Fig. 3 the A(PA values resulting for two different interaction parameters are 
plotted as a function of the nonuniformity U,. For the larger g, i.e., relatively 
far from critical conditions, the two coexisting phases become more similar ( A q A  

decreases) as UB is raised. Near the critical point (g, = 0.002 and pBc = 0.5 for UB 
= 0), this statement remains true only for very small UB values (cf. inset of Fig. 3). 
With larger values of VB the opposite influence is observed, i.e., A(PA increases and 
the polymers become less compatible. 

In order to rationalize this behavior, model calculations were performed for a 
ternary system of a polymer A and two polymers B of different molar masses. The 
number of segments for B1 and B2 are calculated according to Eq. (31) for a given 
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0.135 ~--------- -________ 

0 . 1 3 O m  N, = N,, = 1000 

0.125 / qr = 0.5 
. - A/B(SF) 0.120 

AIB 1 I62 _ _ _ _ _ _  
0.0 0.1 0.2 0.3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _____------  

0.0 I I I I 1 
0 1 2 3 4 

"B 

FIG. 3. ApA, the difference of the volume fraction of component A in the two 
coexisting phases, as a function of the nonuniformity U,. The full lines give the result for 
nonuniformities of component B modeled by Schulz-Flory distributions A/B(SF); the bro- 
ken lines for a model system where B consists of two species, one of a lower (Bl) and one of 
a higher molar mass (B2); NB, and NB2 are calculated as a function of UB according to Eq. 
(31). The inset shows the initial part of the lower curves indicated in the graph by the small 
rectangle. 

U,. The value of the nonuniformity in the ternary system is valid only for mixtures 
in which the volume fractions of B1 and B2 are equal. As can be seen from Fig. 3,  
where the curves for the ternary blend are also shown (broken lines), the results are 
very similar and one again observes a minimum of ApA(UB) even with this simple 
ternary model system. 

Figure 4 gives the details of the phase diagrams of the ternary mixtures being 
considered for which the results are shown in Fig. 3 in a very crude manner only, 
nameIy in terms of ApA, a parallel projection of the tie line passing in Fig. 4 through 
the overall composition of the system into either the A/B1 or the A/B2 edge of the 
phase triangle 

In Fig. 4 the numbers of segments NB, and NB2 are functions of the given 
nonuniformity (Eq. 31). This implies that, unlike the common case (where the 
molar masses are constant for a phase triangle shown and where curves for different 
interaction parameters are depicted), the interaction parameter is constant and the 
molar masses of B1 and B2 vary. In Fig. 4 we plot the spinodals calculated according 
to Eq. (2) with different U, values; the critical line, Eqs. (2) and (3) ,  connecting the 
critical points, is also shown. The critical point for a certain mixture can be read 
from the intersection of the critical line with the corresponding spinodal. The filled 
square in Fig. 4 indicates the overall composition for which the data depicted in Fig. 
3 were calculated. As can be seen in Fig. 4, the critical point approaches the overall 
composition as U, is increased, i.e., the distance of the overall composition to the 
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B2 g,, = 0.0025 

,//, N, = N,, = 1000 

"€3 

0 
0.05 
0.1 
0.5 
2 

B1 critica) line A 
FIG. 4. Spinodal lines for the model systems A/Bl/B2 and g = 0.0025 for different 

U, (in the ternary model-system A/Bl/B2, U, is valid for the 1:l mixture of B1 and B2 
indicated by the broken line). Tie lines corresponding to the different nonuniformities and 
passing through the overall composition are also shown. The solid curve represents the critical 
line resulting from a variation of UB. The filled square marks the overall composition for 
which the results were shown in Fig. 3. 

critical point decreases, and so the tie lines become shorter. This means Acp,, de- 
creases with increasing U,. 

In the other case (g = 0.00201, Fig. 5 ) ,  where g is very close to g,, the critical 
point is initially shifted toward the overall composition as V, is raised. This causes 
a corresponding reduction of ApA. At a certain nonuniformity, however, the critical 

B1 \ 
critical line A 

FIG. 5 .  Same plot as Fig. 4 but for g = 0.00201. 
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line changes its direction and bends toward the components B, i.e., the distance of 
the critical line from the overall composition increases. This means AqA now be- 
comes larger as the nonuniformity is raised. In this manner the minimum shown in 
the inset of Fig. 3 is also reproduced by the model system. 

The model calculations for the ternary system, the results of which are shown 
in Figs. 4 and 5 ,  elucidate the reason for the different effects of polydispersity on 
the compatibility of polymers resulting for different thermodynamic conditions. It 
is the change in the distance between the overall composition and the critical compo- 
sition of the system upon the variation of U, which determines whether the compati- 
bility of polymers becomes larger or smaller as the nonuniformity is raised. Since no 
special assumptions for the Gibbs energy are made within the present calculations, 
the above results should be general. 

One interesting question remains; it concerns the effects of different shapes of 
the molar mass distributions (constant U,) on the compatibilization of polymers. 
The answer is given by comparing the results obtained from calculations with poly- 
dispersities of B modeled in terms of Schulz-Flory distributions and of two and 
three monodisperse species. The overall segment fraction of B is kept constant at 
0.3 and g = 0.0029. The results are shown in Fig. 6 .  

As can be seen from this graph, increasing the nonuniformity is most efficient 
at low U, values, and the particular molar mass distribution of B plays only a minor 
role. As expected, the special shape of the different distributions manifests itself, 
particularly in the region of large nonuniformities. The observation that the data 
for the ternary model system are closer to that of Schulz-Flory distribution than 
that of the quczternary system results from the fact that the volume fractions of 
which the different species of B were made are kept constant in the model systems. 
In other words, increasing the number of components of B considerably beyond 
three in the described manner, one ends up with a rectangular distribution which is 
quite different from the Schulz-Flory distribution. In Fig. 6 the curve for such a 

n s 4 ,  

FIG. 6 .  Ap, (&), by analogy to Fig. 3,  for a Schulz-Flory distributed B (full line), 
and the ternary (broken line) and quaternary (dotted line) model systems far from the critical 
region. The parameters are indicated in the graph. 
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rectangular distribution would be situated markedly above the line shown for the 
quaternary system. 

CONCLUSION AND OUTLOOK 

The calculations presented above have demonstrated that the phase separation 
behavior of polydisperse polymers consisting of m components can be described by 
the new method which minimizes the Gibbs energy of mixing directly with the same 
accuracy as continuous thermodynamics. This means that with future calculations it 
will be possible to account for concentration and molar-mass-dependent interaction 
parameters in a comparatively simple manner. Since the new method does not 
require any derivatives of the Gibbs energy, complex equations accounting for 
deviations in combinatorial entropies of mixing resulting from strong interactions 
can be treated in a simple way. Such progress should be particularly helpful in 
modeling the effects of polydispersity with technically interesting systems realisti- 
cally. Furthermore, it provides the means to consider the effects of polydispersity in 
theoretical studies concerning shear influences on the compatibility of polymers. 
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